

The benefits of getting Soil Fertility Right

Stan Lalor and David Wall

Teagasc, Johnstown Castle

Irish Grassland Association Dairy Conference Clonmel Park Hotel 8 January 2013

Outline – Key Questions

What's happening to soil fertility ?

What steps can be followed to manage it ?

- What are the benefits ?
 - Is there a return on investment to managing / improving fertility ?

What Targets can be set for soil fertility ?

Soil pH – Grassland soils

Grassland target
 = 6.2-6.3

- 60% of grassland soils with pH < 6.0
- ■5.5 6.0 Liming is very important

Soil Test P & K – National

□Index 1 □Index 2 ■Index 3 ■Index 4

- Potassium (K) shows similar trend
- What does this mean for you?
 - 25 % of soils are in Index 3
 - If you don't soil test, you don't know what you are dealing with
 - Are your soil fertility levels declining as well?

Soil Testing – Why?

- Indicator of background soil fertility levels
 - Soil pH and Lime requirement
 - P & K
 - Mg and trace elements
- Tool to help plan nutrient applications
 - Fertilizer
 - Slurry / FYM
- Monitor change in soil fertility levels overtime
 Adjust fertilizer / manure management practices
- Derogation requirement

Soil Testing – Why?

Indicator of background soil fertility levels

- Soil pH and Lime requirement
- P & K
- Mg and trace elem

Recent Survey –

- Only 41% of samples are used for fertilizer planning Mainly used only for cross-compliance
- Tool to help plan nurient applications
 - Fertilizer
 - Slurry / FYM
- Monitor change in soil fertility levels overtime Adjust fertilizer / manure management practices

Soil Test for yourself - Not for the Inspector !!!!! Derogation requirement rence (8 Jan 2013)

Soil Testing – How?

- Area: one sample per 2-4 ha (5 ha with derogation)
 - Soil type; slope; cropping history; drainage; experience
 - Practical management units
- Sampling pattern:
 - Representative sample from entire field
 - Avoid unusual spots (Gates, Feeders, ditches, dung/urine patches, FYM heaps)

Depth

Full 10 cm depth is critical

Soil P level

Soil Testing – When?

- How often:
 - Every 3-5 years (4 years if in derogation)

Fertilizer P & K 3-6 months

• Timing:

- For comparison, sample at same of year
- Avoid extremes (Very dry / waterlogged)

Slurry / FYM 3-6 months

- Late Autumn / Early Spring ideal
 - Results ready for fertilizer planning for the coming year

Lime

2 years

(for accurate soil pH)

Soil pH and Liming

- Optimum pH for grassland = 6.2 6.3
 - Maximum nutrient release from soils
 - Soil biological activity
- 60% of grassland soil < 6.0</p>
- Response to fertilizer P on acid soils ????

Prioritv

Lime requirements

Advice is to apply lime in a 3-5 year cycle
 Grassland typically requires between 0.5 - 1 t/ha/yr

Exceptions

- □ High Mo soils and grassland \rightarrow don't exceed pH 6.2
 - Lime requirements reduced by 5 t/ha
- Where advice is > 7.5 t/ha
 - Split application
 - 7.5 t/ha now
 - Remainder after 2 years
 - Precaution to reduce risk of trace element problems

P & K

Convert test result into soil Index

- Target = All soils in Index 3 for P and K !
 - Only ~ 25% at present

Soil Index	Description	Soil test P (ma L ⁻¹)	Soil test K (ma L ⁻¹)
		((
1	Very low	0 – 3.0	0 - 50
2	Low	3.1 – 5.0	51 – 100
3	Medium	5.1 – 8.0	101 – 150
4	High	≥ 8.1	≥ 151

Soil Index & Advice

Maintenance rates – P & K offtakes

	P (kg)	K (kg)
Milk (1000 litres)	0.9 - 1	1 - 1.5
Liveweight (100 kg)	1	0.5 - 1
Silage (1 ton DM)	3 - 4	25
Leaching (1000 mm rainfall)		~ 10

Soil P and K build up - Grassland

	Р	K
	10 kg/ha	30 kg/ha
	(8 units/acre)	(24 units/acre)
Index 2	16% P 25 kg	Muriate 50 % K 25 kg
	20 kg/ha	60 kg/ha
Index 1	(16 units/acre) 16% P 50 kg	(48 units/acre) Muriate 50% K 50 kg

Soil P and K build up - Grassland

Slurry Value \rightarrow 1000 gallons = ??

Contribution to Slurry Value

Cattle Slurry

- Majority of the value is in P and K
 - Aim to get best use of both
 P and K in slurry
 - Timing or method
 - No effect on P and K
 - Big effect on N

Decisions with slurry

- 1. Where to spread
 - P & K requirements
 - Target fields with:
 - Iow soil P and K
 - High requirements (e.g. silage)

- 2. When to spread
 - Maximise N availability
 - Weather as important as season, but spring generally best
 - Trailing shoe / bandspreader will also increase N value

Nutrient Balance – What is the Weakest Link?

- Nutrient in shortest supply limits determines yield
 - Especially true with P and K
- Fertilizer Planning
 - Soil tests & Cropping
 - Slurry & fertilizers
 - Straight K
 - N-P products
 - N-K products

Fertilizer

Buy what you need
- Not what you're being sold !!

Return on investment

Soil Testing – Cost / Benefit

- ~ 25% of soils are in Index 3
 - If no soil test and assume Index 3, then you are likely to be wrong in 75% of fields !!

Cost

Consider relative to fertilizer cost?

Save Money in Index 4 - Dairy

Example

- Dairy 2 cows / ha
- Index 3 advice (grazing) = 14 kg/ha P & 30 kg/ha K
- Cost of P and K = €58 /ha

Soil Test shows Index 4

□ Save €58 /ha/yr until drops to Index 3

Lost production in Index 1 & 2 - Dairy

Production loss in Index 1 vs. Index 3
 Approximately 1.5 t/ha/yr of grass DM

■ Worth €400 /ha/yr

- Additional P and K for build up = 20 kg/ha P & 60 kg/ha K
 - Additional Cost = €100 ha/yr until soil P / K increases
 - Long-term investment benefits of increasing to Index
 3

Soil pH needs to be right as well !

Soil Fertility Management Targets

- Have soil analysis for whole farm
- Soil pH between 6 and 6.5 in all fields
 6.0 6.2 where high Mo (grassland)
- P and K Index 3 in all fields
 - □ Index 4 is a resource \rightarrow Exploit it
 - Index 1 & 2 should be increased to Index 3

- Optimise slurry first then top up with fertilizer as required
- Nutrient inputs in proper balance
 - Fertilizer planning is key to this

